Search Results

Documents authored by Raszyk, Martin


Document
Practical Relational Calculus Query Evaluation

Authors: Martin Raszyk, David Basin, Srđan Krstić, and Dmitriy Traytel

Published in: LIPIcs, Volume 220, 25th International Conference on Database Theory (ICDT 2022)


Abstract
The relational calculus (RC) is a concise, declarative query language. However, existing RC query evaluation approaches are inefficient and often deviate from established algorithms based on finite tables used in database management systems. We devise a new translation of an arbitrary RC query into two safe-range queries, for which the finiteness of the query’s evaluation result is guaranteed. Assuming an infinite domain, the two queries have the following meaning: The first is closed and characterizes the original query’s relative safety, i.e., whether given a fixed database, the original query evaluates to a finite relation. The second safe-range query is equivalent to the original query, if the latter is relatively safe. We compose our translation with other, more standard ones to ultimately obtain two SQL queries. This allows us to use standard database management systems to evaluate arbitrary RC queries. We show that our translation improves the time complexity over existing approaches, which we also empirically confirm in both realistic and synthetic experiments.

Cite as

Martin Raszyk, David Basin, Srđan Krstić, and Dmitriy Traytel. Practical Relational Calculus Query Evaluation. In 25th International Conference on Database Theory (ICDT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 220, pp. 11:1-11:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{raszyk_et_al:LIPIcs.ICDT.2022.11,
  author =	{Raszyk, Martin and Basin, David and Krsti\'{c}, Sr{\d}an and Traytel, Dmitriy},
  title =	{{Practical Relational Calculus Query Evaluation}},
  booktitle =	{25th International Conference on Database Theory (ICDT 2022)},
  pages =	{11:1--11:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-223-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{220},
  editor =	{Olteanu, Dan and Vortmeier, Nils},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2022.11},
  URN =		{urn:nbn:de:0030-drops-158857},
  doi =		{10.4230/LIPIcs.ICDT.2022.11},
  annote =	{Keywords: Relational calculus, relative safety, safe-range, query translation}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
From Nondeterministic to Multi-Head Deterministic Finite-State Transducers (Track B: Automata, Logic, Semantics, and Theory of Programming)

Authors: Martin Raszyk, David Basin, and Dmitriy Traytel

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Every nondeterministic finite-state automaton is equivalent to a deterministic finite-state automaton. This result does not extend to finite-state transducers - finite-state automata equipped with a one-way output tape. There is a strict hierarchy of functions accepted by one-way deterministic finite-state transducers (1DFTs), one-way nondeterministic finite-state transducers (1NFTs), and two-way nondeterministic finite-state transducers (2NFTs), whereas the two-way deterministic finite-state transducers (2DFTs) accept the same family of functions as their nondeterministic counterparts (2NFTs). We define multi-head one-way deterministic finite-state transducers (mh-1DFTs) as a natural extension of 1DFTs. These transducers have multiple one-way reading heads that move asynchronously over the input word. Our main result is that mh-1DFTs can deterministically express any function defined by a one-way nondeterministic finite-state transducer. Of independent interest, we formulate the all-suffix regular matching problem, which is the problem of deciding for each suffix of an input word whether it belongs to a regular language. As part of our proof, we show that an mh-1DFT can solve all-suffix regular matching, which has applications, e.g., in runtime verification.

Cite as

Martin Raszyk, David Basin, and Dmitriy Traytel. From Nondeterministic to Multi-Head Deterministic Finite-State Transducers (Track B: Automata, Logic, Semantics, and Theory of Programming). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 127:1-127:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{raszyk_et_al:LIPIcs.ICALP.2019.127,
  author =	{Raszyk, Martin and Basin, David and Traytel, Dmitriy},
  title =	{{From Nondeterministic to Multi-Head Deterministic Finite-State Transducers}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{127:1--127:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.127},
  URN =		{urn:nbn:de:0030-drops-107037},
  doi =		{10.4230/LIPIcs.ICALP.2019.127},
  annote =	{Keywords: Formal languages, Nondeterminism, Multi-head automata, Finite transducers}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail